Week 13

Hazard Models II

Rich Frank University of New Orleans November 15, 2012

Today

- Review non-parametric and parametric models
- Discuss semi-parametric models (e.g. Cox)
- Discrete data models
- How to handle time-varying covariates
- How to chose the "right" model
- Interpreting results
- Testing the proportional hazard assumption

• "Finding positive time dependence is like observing rust on a car: the older it gets, the more there is, and the likelier it is to fall apart."

(Alt and King 1994: 193)

MLE

Class 13

Hazard model review

• Like event counts, duration must be greater than or equal to zero.

■ Survival at time *t* means that you have survived since *t-1*. This means that observations at time *t* are **conditional** on observations at time *t-1*.

 Some observations will survive the length of the study. These observations are considered censored.

- Why could we just not run a logit model where all observations are considered 0 until death, which is coded 1?
- Because of the conditionality of the observations.
- Therefore what we need is to figure out the conditional probability of t_i given the fact that a unit survived to t_i 1.
- This can be done within the logit framework using conditional logit or other IVs that model time dependence.

Two Types of Hazard Models

Continuous

• Failure can happen and be captured at *any* time.

Discrete

- Observations are captured within certain regular measures of time (days, months, years).
- The data we have are likely to be discrete time data.
- However, as we will see there is a substantial overlap between the two approaches.

To review...

• f(t) can be considered as the estimate of the instantaneous probability that the event (a dispute) occurs.

$$f(t) = \lim_{\Delta t \to 0} \frac{P(t \le T \le t + \Delta t)}{\Delta t}$$

• Thus as Δt gets infinitesimally small you get an instantaneous estimate of the probability of failure at time t.

• The survivor function, S(t)—the probability of surviving at time t.

As you might guess the chances of surviving past
 t are related to the chance of dying at t.

$$S(t) = 1 - F(t) = P(T \ge t)$$

■ Therefore the failure and the survival rates are related to each other.

This relation is given by the hazard rate.

$$h(t) = \frac{f(t)}{S(t)}$$

■ In words, the hazard rate is the conditional failure rate—the rate that units fail by *t* given that they have survived until *t*.

The (continuous) cumulative hazard function is given by:

$$H(t) = \int_0^t h(t)dt$$

Which can also be (and more often is) seen as:

$$H(t) = -\ln\{S(t)\}\$$

 Last week we started with non-parametric models including the Kaplan-Meier estimator.

■ A non-parametric estimate of the survival function:

$$\hat{S}(t) = \prod_{j \mid t_j \le t} \left(\frac{n_j - d_j}{n_j} \right)$$

Where n_j is the number of individuals at risk at time t_j , and d_j is number of failures at time t_j

 Last week, we also looked at parametric models like the exponential, the Weibull, and the Gompertz.

- Box-Steffensmeier and Jones (2004) also talk about several other parametric models.
 - Log-logistic
 - Log-normal

Why would we turn from parametric models?

- Because they require that we make assumptions about shape of the baseline hazard.
- What if we could use a method that would enable us to make no assumption about what the baseline hazard is—and let the data speak as to what the hazard rate is?
- That way we could focus on the effects of our main IVs without worrying about what would happen if we made the wrong assumption as to what the baseline hazard is.
- That would be cool!

Cox model

• In order to estimate the parameters, Cox (1972,1975) developed what he called partial likelihood.

It is called partial because not all the information available in the data is being used.

• We are not estimating $(h_0(t))$.

Let's remember what our data look like

Data sorted by ordered failure time

dyad	Duration Time	Censored Case?
2020	4	No
2091	16	No
345710	28	No
485623	30	Yes
301587	46	No
200356	51	Yes

Note: Data are sorted by duration time. The duration time for censored cases is the time in the last observation

Relevant data characteristics

- Events can be ordered.
- At t_0 all cases are at risk of failing.
- After the first failure, the risk set decreases by 1.
- As failures occur, the risk set keeps on getting smaller.
- For now we are assuming that there are no ties.
 - No dyads have disputes in the same time unit.

Partial Likelihood function

- The risk set $(R(t_i))$ represents the number of cases that are at risk of failing at time t_i .
- The probability that the jth case will fail at time T_i is given by:

$$P(t_j = T_i | R(t_i)) = \frac{e^{\beta x_i}}{\sum_{j \in R(t_i)} e^{\beta x_j}}$$

Which gives us the following log-likelihood function:

$$\ln(L_p) = \sum_{i=1}^K \delta_i \left[\beta x_i - \ln \sum_{j \in R(t_i)} e^{\beta x_j} \right]$$

• Where δ_i is the censoring indicator ($\delta_i = 1$ if uncensored)

Cox assumptions

- The estimated partial maximum likelihood parameters are asymptotically normal, asymptotically efficient, consistent, and invariant (Box-Steffensmeier and Jones 2004: 52).
- However, note that there is no information included about the actual survival times, t_i , for both uncensored and censored cases.
- This is important because it means that the estimation takes no information from observations where there is no failure (censored cases) except in the risk set (the denominator not the numerator).

Risk set

This partial likelihood is equivalent to

$$L_{p} = \frac{\Psi(7)}{\Psi(1) + \Psi(2) + \Psi(3) + \Psi(4) + \Psi(5) + \Psi(6) + \Psi(7)} * \frac{\Psi(4)}{\Psi(4)} * \frac{\Psi(4)}{\Psi(5)} * \frac{\Psi(5)}{\Psi(5)} * \frac{\Psi(3)}{\Psi(1) + \Psi(2) + \Psi(3) + \Psi(6)} * \frac{\Psi(3)}{\Psi(1) + \Psi(2) + \Psi(3) + \Psi(6)} * \frac{\Psi(1)}{\Psi(1) + \Psi(2) + \Psi(6)} * \frac{\Psi(2)}{\Psi(2) + \Psi(6)} * \frac{\Psi(6)}{\Psi(6)}.$$
 Where $\Psi = e^{\beta x_i}$

As you can see, this risk set cannot handle ties,
 because its focus is on <u>ordering</u> the failure times.

• If there are two failures in a particular time, it cannot tell which one failed first.

■ Box-Steffensmeier and Jones (2004) discuss the four most popular ways of dealing with ties...

Breslow Method

- The default in Stata. Its popularity is attributed to its ease of computation.
- Say that both case 1 and case 2 fail at the same time.
- The Breslow method figures the likelihood of both:

$$L_1 = \frac{\Psi(1)}{\Psi(1) + \Psi(2) + \Psi(6)}$$

$$L_2 = \frac{\Psi(2)}{\Psi(1) + \Psi(2) + \Psi(6)}$$

Breslow likelihood function

$$L_{Breslow} = \prod_{i=1}^{k} \frac{e^{\beta si}}{\left[\sum_{j \in R(t_i)} e^{\beta x_j}\right]^{d_i}}$$

Where:

- s_i is the sum of the covariates for the tied cases.
- d_i is the number of tied cases at time t_i .

Efron Method

- This method differs from the Breslow in that it takes into account how the second risk set would differ depending on which case failed first.
- Breslow assumes the same risk set for both cases.
- However, the Efron method does assume that both orderings are equally likely.

$$= \prod_{i=1}^{k} \frac{e^{\beta si}}{\prod_{r=1}^{d_i} \left[\sum_{j \in R(t_i)} e^{\beta x_i} - (r-1)d^{-1} \sum_{j \in D(t_i)} e^{\beta x_j} \right]}$$

Average Likelihood

 A more exact method for looking at all possible risk sets for ties.

 The likelihood function too complex for even Box-Steffensmeier and Jones to demonstrate.

■ The important thing to remember is that it looks at all possible combinations of tie orderings.

Exact Discrete Method

■ This method assumes that the cases actually do fail at the same time.

• In brief, the exact discrete method is identical to the conditional logit.

Let's see how these models work in the wild.

■ To begin, let's start with Alt and King's (1994) data on cabinet failure.

	nential weibull go		ls(b(star fmt(3)) se(par)) ///
	exponential	weibull	gompertz	COX
		b/se		b/se
main				
fract	-0.001	-0.001	0.001	0.001
11000	(0.001)	(0.001)	(0.001)	(0.001)
polar		-0.015**		
r	(0.006)	(0.005)	(0.006)	(0.006)
format	-0.091*			
	(0.046)	(0.035)	(0.044)	(0.046)
invest	-0.369**	-0.330**	0.346**	0.423**
	(0.139)	(0.107)	(0.128)	(0.140)
numst2	0.515***	0.464***	-0.611***	-0.571***
	(0.129)	(0.100)	(0.126)	(0.132)
eltime2	0.723***		-0.891***	-0.818***
	(0.135)	(0.104)	(0.135)	(0.141)
caretk2	-1.300***	-1.318***	1.704***	1.529***
	(0.260)	(0.201)	(0.265)	(0.280)
cons	3.725***	3.696***	-4.337***	
_	(0.631)	(0.492)	(0.576)	
ln p				
_cons		0.261***		
		(0.050)		
gamma				
cons			0.051***	
_			(0.005)	
N	314.000	314.000	314.000	314.000
11	-425.069	-412.932	-363.845	-1298.828
р	0.000	0.000	0.000	0.000
r 	·			

MLE Class 13

27

 As you can see, the results are similar although there are differences in the estimated coefficients and standard errors.

 Let's dig a bit deeper into the different Cox specifications

Cox with different tie methods

- . estout Breslow Efron Averaged ExactD, cells(b(star fmt(3)) se(par)) ///
- > stats(N ll p) legend replace

	Breslow b/se	Efron b/se	Averaged b/se	ExactD b/se
fract	0.001	0.001	0.001	0.001
IIacc	(0.001)	(0.001)	(0.001)	(0.001)
polar	0.019**	0.020**	0.020**	0.021**
_	(0.006)	(0.006)	(0.006)	(0.006)
format	0.107*	0.111*	0.111*	0.116*
	(0.046)	(0.046)	(0.046)	(0.048)
invest	0.423**	0.432**	0.433**	0.452**
	(0.140)	(0.139)	(0.139)	(0.145)
numst2	-0.571***	-0.584***	-0.586***	-0.622***
	(0.132)	(0.132)	(0.132)	(0.138)
eltime2	-0.818***	-0.846***	-0.847***	-0.872***
	(0.141)	(0.141)	(0.141)	(0.146)
caretk2	1.529***	1.695***	1.719***	1.840***
	(0.280)	(0.283)	(0.286)	(0.327)
N	314.000	314.000	314.000	314.000
11	-1298.828	-1286.678	-917.263	-917.399
p	0.000	0.000	0.000	0.000

^{*} p<0.05, ** p<0.01, *** p<0.001

Interpretation

- So we have run a few models.
- The Exact discrete method model has the largest estimated coefficients.
- How do we interpret what the output tells us?
- Let's start by looking at the values of our IVs to remind ourselves which ones are continuous and dichotomous.

. sum fract polar format invest numst2 eltime2 caretk2 if e(sample)

Variable	Obs	Mean	Std. Dev.	Min	Max
fract	314	718.8121	87.98591	349	868
polar	314	15.28981	12.81406	0	43
format	314	1.904459	1.413235	1	8
invest	314	.4522293	.4985072	0	1
numst2	314	.6305732	.48342	0	1
		4070644			
eltime2	314	.4872611	.5006355	0	1
caretk2	314	.0541401	.2266552	0	1

The Cox with Efron Method

```
stcox fract polar format invest numst2 eltime2 caretk2, efron nohr
        failure d: ciep12
  analysis time t: durat
Iteration 0: \log \text{ likelihood} = -1369.664
Iteration 1:
            log likelihood = -1307.7966
Iteration 2: \log \text{ likelihood} = -1286.7898
Iteration 3: \log \text{ likelihood} = -1286.6782
             log likelihood = -1286.6782
Iteration 4:
Refining estimates:
Iteration 0: \log \text{ likelihood} = -1286.6782
Cox regression -- Efron method for ties
No. of subjects =
                314
                                            Number of obs = 314
No. of failures =
                      271
Time at risk = 5789.5
                                            LR chi2(7) = 165.97
Log likelihood = -1286.6782
                                           Prob > chi2 = 0.0000
        _t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     fract | .0013349 .0009231 1.45 0.148 -.0004743 .0031442
     polar | .0198011 .0061485 3.22 0.001 .0077503 .031852 format | .1109851 .0459212 2.42 0.016 .0209813 .200989
     invest | .4324272 .1393422 3.10 0.002 .1593215 .7055329
     eltime2 | -.8461374 .1407433 -6.01 0.000 -1.121989 -.5702857
    caretk2 | 1.694705 .2826007 6.00 0.000
                                               1.140817 2.248592
```

- As we saw last week, the coefficients can be seen as hazard rates.
- To derive the hazard ratio all you have to do is exponentiate the coefficient.
- For the investiture variable, the estimated hazard ratio is:

```
. display exp(_b[invest])
1.5409933
```

■ This suggests that the risk of cabinet failure is about 1.54 (or about 1½ times) greater when there is an investiture requirement (1) than when there is not (0).

• What about whether it forms after an election?

```
. display exp(_b[eltime2])
.42906907
```

- This suggests that if the government was formed immediately after an election, the risk is about 43% of those cases where there were longer, and more protracted negotiations necessary to form a government.
- We can also get the risk when eltime2=0

```
display 1/exp(_b[eltime2])
2.3306271
```

■ This tells us that the risk of failure is 2.4 times greater than cases where eltime2=1

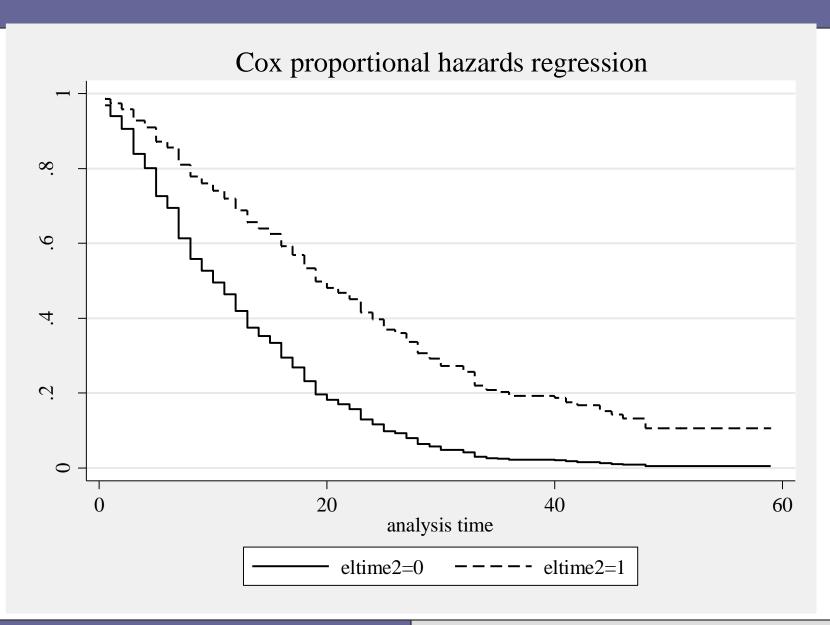
Or you can estimate the HR directly

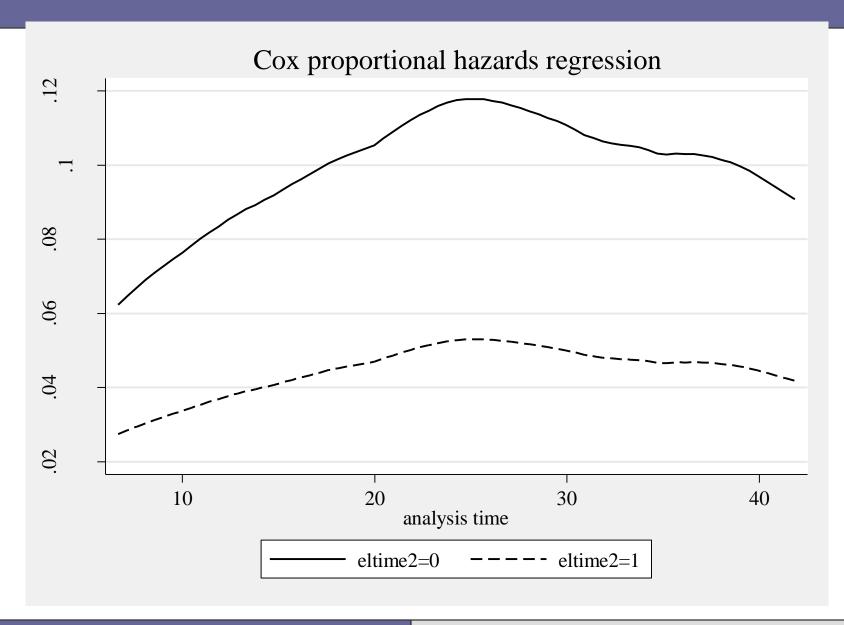
```
. stcox fract polar format invest numst2 eltime2 caretk2, efron
         failure d: ciep12
   analysis time t: durat
Iteration 0: \log \text{ likelihood} = -1369.664
Iteration 1: \log \text{likelihood} = -1307.7966
Iteration 2: \log \text{likelihood} = -1286.7898
Iteration 3: \log \text{ likelihood} = -1286.6782
Iteration 4: \log \text{ likelihood} = -1286.6782
Refining estimates:
Iteration 0: \log \text{ likelihood} = -1286.6782
Cox regression -- Efron method for ties
No. of subjects = 314
                                                    Number of obs = 314
No. of failures = 271
Time at risk = 5789.5
                                                    LR chi2(7) = 165.97
                                                   Prob > chi2 = 0.0000
Log likelihood = -1286.6782
          _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
       fract | 1.001336 .0009243 1.45 0.148 .9995258 1.003149

    polar | 1.019998
    .0062715
    3.22
    0.001
    1.00778
    1.032365

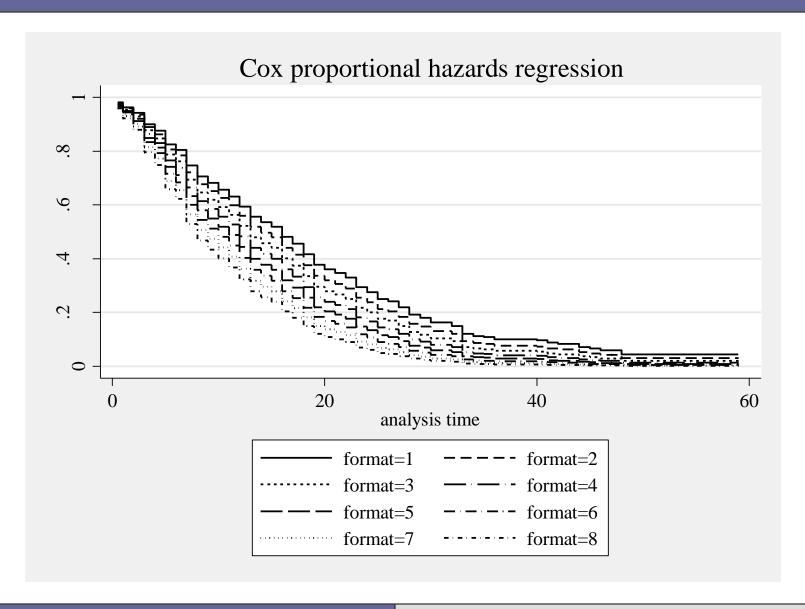
    format | 1.117378
    .0513113
    2.42
    0.016
    1.021203
    1.222611

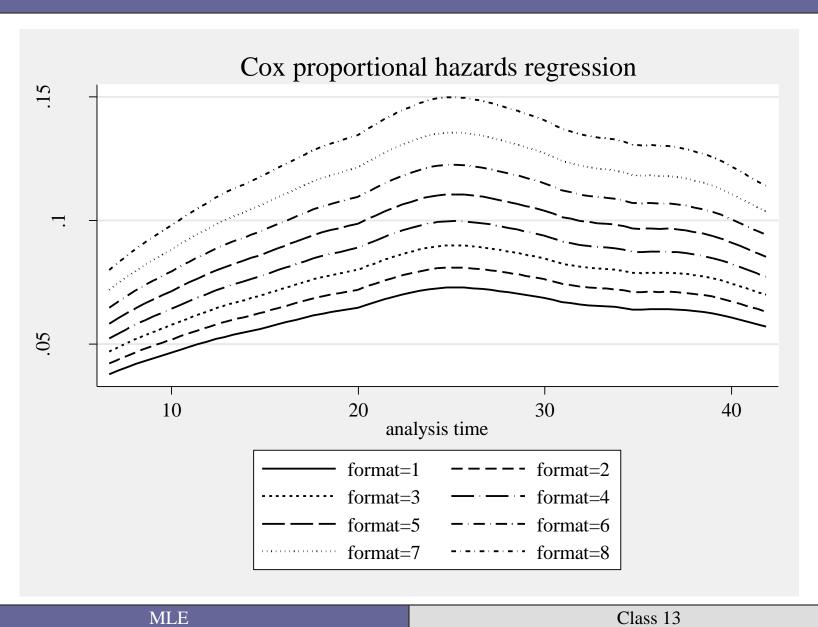
      invest | 1.540993 .2147254 3.10 0.002 1.172715 2.024925
     numst2 | .5576656 .0737971 -4.41 0.000 .4302614 .7227951 eltime2 | .4290691 .0603886 -6.01 0.000 .3256314 .5653639
     caretk2 | 5.445038 1.538772 6.00 0.000 3.129325 9.474386
```





36





To look at how a particular variable affects the hazard rate:

$$\%\Delta h(t) = \left[\frac{e^{\beta(x_i = X_1)} - e^{\beta(x_i = X_2)}}{e^{\beta(x_i = X_2)}}\right] * 100$$

Where x_i is the covariate (e.g. post-election) and the X_1 and X_2 are two values of x_i .

Let's look at how polarization can affect the hazard rate.

```
. codebook polar if e(sample)
Polarization Index
                type: numeric (float)
                                                units: 1
               range: [0,43]
        unique values: 34
                                              missing .: 0/314
                mean: 15.2898
            std. dev: 12.8141
                                    25% 50%
3 14.5
          percentiles:
                           10%
                                                      75%
                                                                90%
                                                        25
                                                                  36
. * Change from mean to 1sd above mean **
. display((exp(b[polar]*28.1039)-exp(b[polar]*15.2898))/exp(b[polar]*15.2898))*100
28.882878
. ** to 1sd below mean
. display((exp(b[polar]*2.4757)-exp(b[polar]*15.2898))/exp(b[polar]*15.2898))*100
-22.410175
```

MLE Class 13 40

As you can see, there are a number of different ways of trying to look at the substantive effect of your independent variables on the hazard of failure.

• However, underscoring the Cox model (as well as the Weibull) is the assumption that the hazards are proportional.

Let's look at the prop. hazards assumption

. tab format Number of | Formation Attempts / | 1-7 or 8+1Percent Freq. Cum. 1 179 57.01 57.01 63 20.06 77.07 36 11.46 88.54 14 4.46 92.99 5 12 3.82 96.82 1.59 6 98.41 0.32 98.73 8 1.27 100.00

314

Total |

MLE Class 13

42

100.00

```
gen format ratio=exp( b[format]*format)
   tab format ratio
format rati |
           Freq. Percent
                             Cum.
  1.117378
               179 57.01 57.01
            63 20.06
  1.248534
                            77.07
             36 11.46 88.54
  1.395085
                     4.46 92.99
  1.558838 |
             14
             12
                     3.82 96.82
  1.741812 |
  1.946262
                      1.59 98.41
                     0.32 98.73
  2.174711
  2.429975
                      1.27
                              100.00
               314 100.00
    Total |
```

MLE Class 13

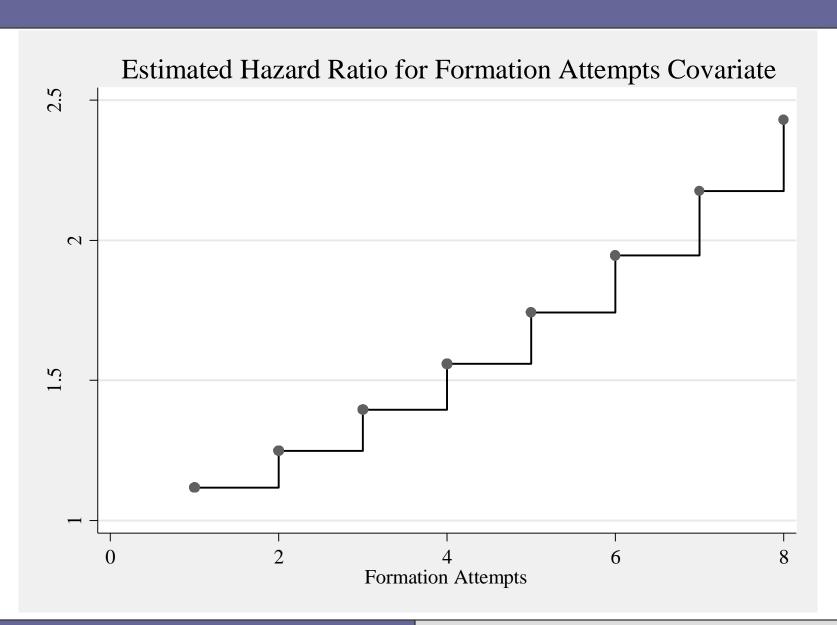
43

• Like with other PH models, the ratio of each value to the adjacent one is identical...

```
. display 1.395085/1.248534
1.1173785

. display 1.741812/1.558838
1.1173785

. display 2.429975/2.174711
1.1173784
```



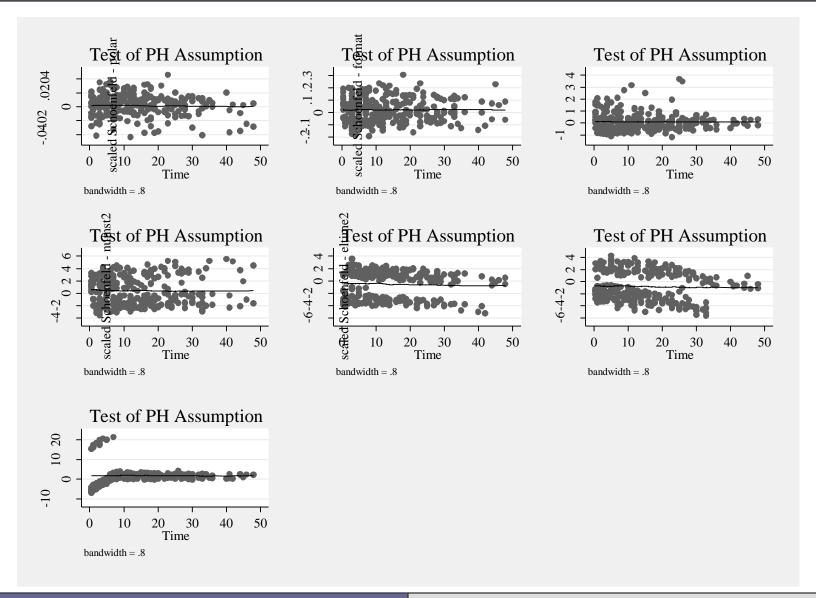
Proportional hazards property

Same as the Weibull.

 Changes to the baseline hazard rate in the exponential are in multiples of the baseline hazard.

$$\frac{h_i(t \mid x_1 = 1)}{h_i(t \mid x_1 = 0)} = e^{-\beta_1}$$

Testing the PH assumption: Schoenfeld Residuals



MLE

```
stcox fract polar format invest numst2 eltime2
caretk2, nohr efron schoenfeld(sc*)
scaledsch(ssc*)
stphtest, plot(fract ) saving(sc1, replace )
stphtest, plot(polar) saving(sc2, replace)
stphtest, plot(format ) saving(sc3, replace )
stphtest, plot(invest ) saving(sc4 , replace)
stphtest, plot(numst2 ) saving(sc5, replace )
stphtest, plot(eltime2 ) saving(sc6 , replace)
stphtest, plot(caretk2) saving(sc7, replace)
graph combine scl.gph sc2.gph sc3.gph sc4.gph
sc5.gph sc6.gph sc7.gph
```

MLE Class 13 48

 The visual test of the Shoenfeld residuals relies largely on the eye of the beholder to decide of the PH assumption is met.

Testing the PH assumption

. stphtest, detail

Test of proportional-hazards assumption

'	'
' '¬ m	'l' m o
Time:	Time

	 rho	chi2	df	Prob>chi2
fract polar format invest numst2 eltime2 caretk2	-0.10251 -0.10251 -0.01391 -0.04127 -0.01072 -0.07590 -0.06889 0.00063	2.93 0.05 0.45 0.03 1.68 1.35 0.00	1 1 1 1 1 1 1	0.0868 0.8265 0.5039 0.8615 0.1947 0.2457 0.9913
global test	+ 	8.83	 7	0.2653

- What does a significant rho tell us?
- It suggests that the correlation between the scaled Schoenfeld residuals and the rank of the survival time is significantly different than 0.
- The null is that rho equals 0.
- What can we do if there is some time correlation?
- The most frequent method (used by Box-Steffensmeier, Reiter, and Zorn 2003) is to interact some function of time with the problematic variable.

MLE

I tried the one variable that could be problematic, the fractionalization index, but the likelihood curve was flat, and Stata would not estimate it.

MLE

Which model is "best"

■ The short answer: it depends...

• It is easier with parametric models to look at the estimated hazard function with the generalized gamma or the Weibull to see what direction the baseline hazard is going.

 With parametric and semi-parametric models one method is using the Akaike Information Criterion (AIC) for non-nested models.

AIC

$$AIC = -2(logL) + 2(c + p + 1)$$

- Where c is the number of independent variables
- And p is the number of structural parameters

■ The idea is to "reward parsimonious models" by adding to the LL for every parameter estimated

MLE

AIC

Model	Log-Likelihood	AIC
Exponential	-425.07	866.14
Gompertz	-363.84	745.69
Weibull	-412.93	843.86
Cox with Breslow	-1298.83	2611.66
Cox with Efron	-1286.68	2587.35
Cox with Average L	-917.26	1848.52
Cox with Exact D	-917.40	1848.80

Baseline hazard in Cox

- What if we do want to look at the baseline hazard function $\hat{h}_i(t)$ after running a Cox model?
- Box-Steffensmeier and Jones (2004) discuss a method suggested by Kalbfleisch and Prentice (1973, 1980) for recovering the baseline hazard after the Cox.

$$\widehat{h}_i(t) = -\ln \widehat{S}_o(t) = -\sum_{i=1}^n \ln \widehat{\alpha}_i$$

Class 13

Generating Baseline functions

- To obtain a natural 0 point in the IVs, we can mean center polar and format.
- egen meanpolar=mean(polar)
- . gen polarmean=polar-meanpolar
- egen meanform=mean(format)
- . gen formmean=format-meanform

failure d: ciep12 analysis time t: durat Iteration 0: $\log \text{ likelihood} = -1000.4512$ Iteration 1: $\log \text{ likelihood} = -937.95835$ Iteration 2: log likelihood = -918.35198Iteration 3: log likelihood = -918.30728Iteration 4: $\log \text{ likelihood} = -918.30727$ Refining estimates: Iteration 0: $\log likelihood = -918.30727$ Cox regression -- exact marginal likelihood No. of subjects = 314 Number of obs = 314 No. of failures = 271 Time at risk = 5789.5LR chi2(6) = 164.29Log likelihood = -918.30727Prob > chi2 = 0.0000t | Coef. Std. Err. z P>|z| [95% Conf. Interval] invest | .3881819 .1372435 2.83 0.005 .1191896 .6571743 polarmean | .0234117 .0056238 4.16 0.000 .0123893 .0344341 numst2 | -.5842937 .1323193 -4.42 0.000 -.8436348 -.3249526 formmean | .1303069 .0439 2.97 0.003 .0442643 .2163494 eltime2 | -.8623465 .1407457 -6.13 0.000 -1.138203 -.58649 1.17374 2.297997 caretk2 | 1.735869 .2868057 6.05 0.000

. stcox invest polarmean numst formmean eltime2 caretk2, nohr exactm

MLE Class 13 58

 Actually estimating the baseline hazard in Stata requires continuing on with a series of steps that are outside the scope of this class.

■ They can be done, and Brad Jones has kindly put the do-file to do so on his website.

■ An example can be seen on pages 64-66 of Box-Steffensmeier and Jones (2004).

- There are a number of extensions to the basic
 Cox model and conditional logit to better model
 the data generating process:
 - Frailty models (e.g. Aydin 2010)
 - Repeated events
 - Competing risks
 - Non-proportional hazards (Box-Steffensmeier, Reiter, and Jones 2004)

Let's look at several of these articles in more detail...